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Abstract-The measurement of the mass transfer rate to flush mounted wall electrodes is a commonly used 
method to determine the wall shear stress. An analysis for the performance of these probes in the presence 
of large amplitude unsteady flows is presented. This is accomplished by using numerical solutions of the 
direct (the variation of the wall shear stress with time is given) and the inverse problem (the variation of 
mass transfer rate with time is given). For cases in which flow reversal occurs additional information about 

the flow direction is needed. 

1. INTRODUCTION 

SMALL electrodes mounted flush to a wall are widely 
used to measure the wall shear rate in flow systems. 
(The wall shear stress can then be calculated if the 
viscosity of the fluid is known.) These electrodes are 
part of an electrolysis cell in which the other electrode 
has a much larger area. An electrochemical reaction 
is carried out on the surface of the test electrode under 
conditions that the reaction rate is fast enough that 
the concentration of the reacting species is zero at the 
surface and the electrochemical process is controlled 
by the rate of mass transfer, n, to the test electrode. 
A solution of the mass balance equations for steady 
flow conditions shows that the measured electric cur- 
rent is proportional to the one-third power of the wall 
shear rate, s. A thorough review of experimental and 
theoretical problems related to the use of this tech- 
nique is given in ref. [ 11. This paper extends the range 
of usefulness by presenting a mathematical analysis 
for flows which have large amplitude flow variations. 

In unsteady flows the time variation of the wall 
shear stress causes a time variation of the mass trans- 
fer rate. If the variation of s is slow enough the one- 
third power law can still be applied to relate the instan- 
taneous wall shear rate to the instantaneous current. 
However, in most cases, the inertia of the con- 
centration boundary layer cannot be ignored and the 
quasi-steady assumption is not valid. 

Most of the work on the frequency response of 
heat or mass transfer probes [2-71 has involved the 
assumption that the amplitude of the fluctuations is 
small compared to the time-averaged flow (such as 
would be the case for ‘steady’ turbulent flow over a 
flat surface). In this case a mass transfer variation of 

a given frequency is directly related to an s variation 
of the same frequency. Therefore, if the response of 
the electrode to sinusoidal fluctuations of different 
frequencies is known the frequency spectrum of s can 
be related to the measured frequency spectrum of n(t) 
by the superposition principle. 

Ramaprian and Tu [8] reported on difficulties in 
interpreting measurements from wall shear stress 
probes in studies of the influence of imposed flow 
oscillations of large amplitude. Kaiping [9] presented 
numerical results on the response of a wall probe to 
a flow which consists of a steady velocity plus a large 
amplitude sinusoidal variation. His results show that, 
as the frequency increases, the departure from quasi- 
steady behavior becomes more important. This effect 
is manifested by increases in the amplitude and phase, 
and a change in the form (both for reversing and non- 
reversing flows) of the curve representing n(t). Pedley 
[lo] approximated the heat transfer from a hot film 
probe in reversing shear flows with a combination of 
a quasi-steady solution and a pure diffusion solution 
and showed that n(t) deviates considerably from the 
quasi-steady solution. 

This paper is related to that of Kaiping [9] and of 
Pedley [lo] who calculated n(t) for a given s(t). It 
differs in that it focuses upon the inverse problem of 
calculating s(t) from a measured n(t). Considerable 
attention has been given to the problem of inverse 
heat conduction, as summarized by Beck et al. [l 11. 

The presence of a convection term in the mass or heat 
balance equation for wall probes, however, makes the 
analysis considerably more difficult. Moreover, when 
temporally reversing flow happens close to the wall 
the inverse problem is not unique. Two approaches 
are considered: in one of these a function for s(t) 
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NOMENCLATURE 

area of electrode [m”] 
concentration [mol m- ‘1 
bulk concentration [mol m-‘] 
dimensionless concentration 
molecular diffusivity [m” s- ‘1 
Faraday’s constant 
ratio of consecutive grid spacings in x for 
electrode 
ratio of consecutive grid spacings in F 
ratio of consecutive grid spacings in x for 
wake region 
electric current [A] 
length of electrode [m] 
dimensionless length of electrode 
dimensionless length of wake region 
mass transfer coefficient [m s.- ‘1 
measured modified Nusselt number 
total mass flux on the electrode 
[mol m”’ s--‘I 
fluctuation of mass flux 
modified Nusselt number. 
KL,D(L’? ‘z&q - I!3 

modified Nusselt number of quasi-steady 
solution 
number of electrons transferred in the 
electrochemical reaction 
shear rate at the wall [s- ‘] 
time averaged shear rate at the wall 
fluctuation of shear rate 
dimensionless shear rate at the wall, s/S 
amplitude of dimensionless shear rate at 
the wall 
Schmidt number, v/D 

time fs] 
velocity in the x-direction [m s- ‘1 
velocity in the pdirection [m s- ‘1 
distance in the streamwise direction [ml 
dimensionless distance in the streamwise 
direction, .X/L 

.)- distance normal to the wall [m] 
Y dimensionless distance normal to the 

wall, (_v+ &‘j3)/L+ I/3. 

Greek symbols 
[i /, /12, /I3 parameters defined in equation 

(291 
AX, AY, A,z steps in the appropriate 

coordinate directions 
6 Y,, 6 Y, half steps in Fig. 1 
6+ c dimensionless concentration boundary 

thickness 
5: dimensionless concentration boundary 

thickness defined in equation (23) 
c small number for convergence or 

perturbation 
z dimensionless time, t+ (SC”’ LZiB)- ’ 
T*, z l times of flow reversal starting and ending, 

respectively 

7, wall shear stress fN m - ‘1 
w* dimensionless angular frequency, 275/z,, 

where zp is the dimensionless time 
period. 

Subscripts 
i, j, k index for the coordinate directions X, 

Y, 7, respectively 
1, r, u, d left, right, up and down interfaces 

of the control volume, respectively 
L, R. U, D, P grid points. 

Superscripts 
0 previous time step or trial value 

amplitude 
- 

time averaged 
+ nondimensionalized with wall 

parameters : friction velocity zd* and 
kinematic viscosity v. 

with several unknown parameters is assumed. These 
parameters are selected through an iterative numerical 
scheme that calculates n(t). The second approach does 
not estimate the s simultaneously for the whole time 
domain. Instead, it is assumed that s(t) for t < fk is 
known and that the predicted n(t) for t < tk is a good 
fit to the measurements. Then the wall shear rate is 
calculated at tk+, from the experimental data on n at 
t k+ I and the knowledge about s(r) for t < tk. 

For cases in which the flow is always moving in the 
same direction, either of these methods can be used 
to calculate s(t) from measurements of n(t) obtained 
with a single probe. However, in cases for which 
the flow is reversing direction, the solution of the in- 
verse problem requires additional information. The 

approach taken in this paper is that measurements are 
available that give the direction of flow at time t, in 
addition to n(t). One way to obtain this information 
would be to use a sandwich of two electrodes, as 
suggested by Son and Hanratty [12], by Py [I 31, and 
by Hanratty and Campbell [ 11. 

The results used to test the computational methods 
were obtained by solving the mass balance equation 
numericafly for sinusoidal wall shear stress variations 
of different amplitudes and different frequencies. The 
calculated n(t) relations were then analyzed to obtain 
the original s(t). 

The motivation for the present work is the use of 
wall transfer probes to study flows with superimposed 
large amplitude sinusoidal oscillations. Previous 
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studies by Mao and Hanratty [6] and by Finn&n and 
Hanratty [14] have been limited to low amplitudes for 
which a sinusoidal flow oscillation causes a sinusoidal 
variation in s(t) superimposed on the time-averaged 
wall shear rate f. An increase of the amplitude of the 
flow oscillations eventually is associated with a non- 
sinusoidal variation of s(t). It has been difficult to 
determine whether this results from non-linear effects 
in the turbulence or whether it reflects the probe 
response. 

2. STATEMENT OF THE PROBLEM 

A rectangular electrode embedded in the wall with 
its long side perpendicular to the direction of mean 
flow is considered as a cathode in an electrochemical 
cell. The current, I, flowing in the circuit is pro- 
portional to the mass flux by the relation 

I 

n=Fn,A. (1) 

If the length of the probe in the flow direction is 
small enough that the thickness of the concentration 
boundary layer over the electrode is thin compared 
to the width of the electrode, the concentration field 
can be described by a two-dimensional mass balance 
equation 

At high Schmidt number, the thickness of the con- 
centration boundary layer is small enough that the 
effect of velocities normal to the surface can be 
neglected and the velocity in the streamwise direction 
is given by 

u = s(t)y (3) 

where s(t) is the time-dependent velocity gradient on 
the wall. Molecular diffusion in the streamwise direc- 
tion is normally small compared to streamwise con- 
vection in steady flow. Although the diffusion at the 
two ends of the electrode is not negligible, its influence 
on the total mass flux to the electrode can still be 
ignored if the probe is long enough in the flow direc- 
tion. Ling’s numerical solution [ 151 indicates the error 
caused by neglecting the streamwise diffusion is less 
than 5% provided 

Lf2 SC > 200. (4) 

Here L+ is the length of the electrode made dimen- 
sionless with the friction velocity and the kinematic 
viscosity. For large amplitude unsteady flows, the vel- 
ocity gradient can approach zero or pass through zero 
during a reversing of the flow. Under these conditions 
it would be suspected that streamwise diffusion cannot 
be neglected, even if (4) is satisfied. However, an 
analysis by Kaiping [9] shows that if thermal inertia 
is important vertical diffusion still dominates over 
streamwise diffusion and is balanced by thermal 

inertia, &/at. Therefore, equation (2) is further sim- 
plified and written in a dimensionless form as 

ac ,+s(T)Yg 
where 

Y = (y+ SC”~)/L+“~, z = ,+/(SC”~ L+2’3). (6) 

This is solved using the following boundary con- 
ditions : 

C(X,O,z)=O forO<X<l 

ac 

ay y=. 
=0 forX<OandX> 1 

ac 

ay y=oo 
= 0 for all X 

C=l for&+-coandX-+co. (7) 

The first of these boundary conditions arises because 
of the assumption that the electrochemical system is 
operated under conditions that the current is con- 
trolled by the rate of mass transfer to the test 
electrode. That is, the reaction rate is fast enough that 
the concentration of reacting species at the electrode 
surface is kept at zero. 

In solving the direct problem the time-dependent 
shear rate is assumed to be 

s= 1+~cos(w*r) (8) 

and equation (5) is solved to obtain the mass flux 
on the electrode. A modified Nusselt number Nu* is 
defined and calculated from integration of the con- 
centration gradient at the surface along the electrode 

For steady or quasi-steady flow, the inertia term, 
&/at, in equation (5) is negligible. The solution is then 
given as 

or as 

Nu,* = 0.807 (10) 

KL &52 l/3 

- = 0.807 F . 
D (> 

(11) 

This is the third power law referenced in Section 1. 

3. NUMERICAL METHOD FOR THE DIRECT 

SOLUTION 

For a given time variation of S(T), equation (5) is 
solved numerically, and the modified Nusselt number 
Nu*(z) is calculated from equation (9). Since the 
numerical method for solving this direct problem is 
the main building block for the inverse problem, the 
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FIG. I. Schematic diagram of the control volume. 

numerical scheme should be stable and suitable for 
both non-reversing and reversing flow. This requires a 
numerical method different from that used by Kaiping 
[9]. The control volume method, introduced by Patan- 
kar [ 161, is used to derive a discretized form of equa- 
tion (5). The advantage ofthe control volume method 
is that conservation of mass is exactly satisfied over 
each volume element, and over the whole domain of 
calculation, even for the case of a coarse grid. This 
is extremely important when the equation has non- 
linear features. Moreover, with the control volume 
method, variable grid size and discontinuities of the 
boundary condition can be easily treated. 

Each grid point is surrounded by a non-overlapping 
control volume, as shown in Fig. 1. The concentration 
between the grid points is assumed to have a piecewise- 
linear profile. Equation (5) is integrated over each 
control volume, to give the following discretized 
form : 

cp-c; 
AZ 

(12) 

where C, is the concentration on interface r of the 
control volume and C,, the concentration on interface 
1. The convection term in equation (12) is treated with 
an upwind scheme ; i.e. 

c, = c, c, = c, 
c, = c, ifS>Oand 

c, = c, 
if S < 0. (13) 

The principle of the upwind scheme is that the con- 
centration at the interface of the control volume is 
determined by the concentration at the upstream grid 
point from which molecules are carried by the forced 
flow to the interface point. The concentration gradi- 
ents at interfaces u and d are approximated with 
piccewise-linear profiles 

By substituting 

ac C-J G-CP -_-- 
ay, SY” (14) 

ac 
0 

G--CD ry d = ---aj’ (15) 

esuations (13)-( 151 into eauation _ , \ , 1 
trode changes rapidly initially and then gradually 

FIG. 2. Layout of the computational grids. 

(12), the final form of the finite difference equation is 
derived as 

a,Cp = a,C”+a,C,+(a,C,+a,OC,O) forS>O 

(16) 

where 

AXA Y 
a,=SYAY, a:=--- 

A? 

a, = a,+ad+at+ap” 

and as 

a,G = auCu +a,& + (a$, +a,OCF) 

where 

a, = -SYAY 

up = a,+a,+q+a,0 

(17) 

for S < 0 

(18) 

(19) 

and a,,. a, and a,” are the same as in equation (17). 
If the concentration C,” at the previous time step 

and the concentration CL or CR at the upwind grid 
point are known, the con~ntration C, at the new time 
can be obtained by solving the set of tridiangular 
algebraic equations, equation (16) or (18). The 
coefficients in equations (16) and (18) are all positive. 
and the coefficient ap is the sum of the neighboring 
coefficients. This scheme satisfies the rules described 
by Patankar [16]. It is a completely implicit scheme. 
so it is stable for all times. 

The layout of the grid points is illustrated in Fig. 2. 
In the concentration boundary layer the con- 
centration changes dramaticahy at the leading edge of 
the electrode and in the region close to the surface of 
the electrode. In order to resolve this change more 
accurately, variable grid sizes both in the x-direction 
and in the y-direction are used 

AX, = hpX,_ , (20) 

AY, = h,,AY,_, (21) 

where h, and h, are greater than 1. In the wake region, 
the concentration near the trailing edge of the elec- 



approaches the bulk concentration at a large distance Table 1. Parameters used in the numerical calculation 

away from the trail. Therefore, a variable grid size is 
also used in this region 

X &lifS<l,-X,,-(l+X,,)ifS>l 
Y O-6 

A&, = &A&_, . (22) 
AX, 0.001 AX,, 0.05 
k 1.25 h, 1.75 

The distribution of the grid points is symmetric to the 
AY, 0.01 E 0.001 
h, 1.15 

center of the electrode, so that when the flow reverses 
the grid size is still small enough to resolve the changes 
at the new leading edge. Therefore, with the present 
layout of the grid points, both non-reversing and w*. It is selected to be greater than that given by 
reversing flows can be treated. equation (26) 

For steady flow the thickness of the concentration 
boundary layer at the end of the electrode can be 40s 

X F WK = (27) 
calculated by defining the outer edge of the con- 
centration boundary as C = 0.99 in order that the bulk concentration is reached. This 

S: = (6: SC”~)/L+‘;~ = 2.92. (23) 
selection is conservative, so as to insure that the cal- 
culation is not affected by the size of the computation 

In unsteady flow the concentration boundary thick- domain. Both the asymptotic solution of Ling [15] 
ness is varying around its mean value as the shear rate and numerical calculations confirm that the boundary 
varies. If the shear rate approaches zero, the thickness condition for X = f cc given in boundary conditions 
predicted by equation (23) will approach infinity. (7) can be accurately represented at X,,. The initial 
However, because of the inertia of the concentration concentration at each grid point was set at 1, except 
boundary layer this does not occur in the unsteady at the surface of the electrode where the concentration 
problem. It has been found that the selection of a is assigned a value of zero. Since the numerical scheme 
computational domain from 0 to 6 in the Y-direction is stable, the selection of the time step was not critical. 
is adequate for the present calculation, in that no Sixty-four time steps for each period were chosen, 
difference in the results were noted when an outer since the use of 128 steps produced the same results. 
boundary of Y = 4 was used. For each time step, the concentration field at the 

If only non-reversing flow is considered the com- previous time step and the concentrations at the 
putational domain in the X-direction is from 0 to 1, upstream grid points are known. If the shear rate is 
which is the space domain of the electrode. However, positive, the concentration is calculated from the left 
if there is flow reversal the domain of computation to the right in Fig. 2 step by step by equation (16). If 
needs to be expanded to cover the wake region since, the shear rate is negative, the calculation is from right 
after a reversal, fluid particles in the wake will be to left. The local concentration gradient at the surface 
convected to the region above the electrode. The of the electrode is calculated as 
extent of the wake that reaches the electrode after a 
reversal has been suggested by Kaiping [9] to be ac CK Y2) =- 

s 

i%‘,,=,, AY, 
71 

L, = SY,,, dz. (24) and the total mass flux is calculated by using the 
To 

trapezoid rule to integrate numerically along the elec- 
This is the maximum distance reached by fluid par- trode surface. 
ticles traveling backward during the period of revers- After calculation over a period is completed, the 
ing flow. Therefore, the computational domain in the newly derived Nu*(z) are compared to the values of 
wake region needs to be greater than L, and to reach the previous period. If the difference between the two 
a point where the concentration is close to the bulk is greater than a certain value, the newly obtained 
concentration, as required by boundary condition (7). concentration field is used as the initial condition to 
If the shear rate has the form continue the calculation for the next period. A station- 

S= l+scos(o*r) and s> 1 (25) 
ary solution is usually reached after 3-5 periods. Typi- 
cal parameters used in the numerical calculations are 

then summarized in Table 1. 

L, < 
d(w*z) s cos (W*T) Y,,, w* 4. NUMERICAL METHODS FOR THE INVERSE 

PROBLEM 

or 4.1. Calculation of S for a whole time domain 
A functional form of S(Z) was assumed as 

S(7) = p, +8* cos (0*7+p3). (29) 

The total wake length, therefore, depends on 3 and Parameters /I,, fi2 and f13, are selected so that the 
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estimated Nu*(z) obtained from a direct numerical 
solution of the mass balance equation gives the best fit 
of the measured values ofNu*, which are represented 
as M(z). In discrete form, let Mn be the measured 
i%*(r) and Nu$, the estimated Mu*(z) at given time 
increments, TV. Then, the mean-square error is 

D= c (Mk-Nuf)’ (30) 
k- I 

where r is the total number of measurement points. 
The estimated Nut depend on parameters p,, /3? and 
p3. A best fit of Nu$ requires 

alI 
- = -2,$, (M,-Iv&$ = 

aPj 
0, j=1,2,3 

I 

(31) 

where aNd/a/l, is the sensitivity coefficient, which 
indicates how the estimated value Nu* at time rk 
changes with changes in parameter A. If /.l,? represents 
a trial value and Nut’, the modified Nusselt number, 
then the improved value of Nuz” can be approximated 
by a Taylor series expansion around the trial value 

BP 

alvu,* 
Nu: = Nu:‘+ i (8,-8:)~ po> I= 1,2,3. 

/= 1 i 

(32) 

After substituting equation (32) into equations (31), 
the following is derived : 

j= 1,2,3. (33) 
km, 

By solving the above set of equations, an improved 
set of parameters of p, is obtained. In order to solve 
the set of equations (33), Nu.$-~ and (~~u~/a~j)o are 
calculated by solving the direct problem with assumed 
parameters /3!, /3: and j?i. The sensitivity coefficients 
are calculated from equations of the form 

where E is a small perturbation factor. This requires 
solving the direct problem four times with four sets 
of parameters: IP?, #% 8% Z(1 +M, P% 8% IflY, 
(I +E>@, 83, [j??, j?i, (1 +.s)p$. The values of Nuk*, 
calculated from equation (32), are compared with the 
measured values of Mk to decide if another iteration 
is necessary. 

4.2. Calculation qf‘S using sequential estimation 
The sequential estimation assumes the variation of 

the shear rate at time r d tk is known and that the 
predicted mass flux Nu*(T) fits the data well. Then. 
the shear rate at time 5 = TV+, is estimated from the 
known experimental data M,, , at ‘I: = TV+ , . 

The mass flux Nz$+, at time Q+, depends on the 
assumed shear rate .!i’,+ , if the concentration field is 
known at time zk. The shear rate at time zk+, is related 
to the shear rate at z* with 

S,“, / = S, + AS. (35) 

The change of the concentration field from t, to tk+ , 
is then solved directly to calculate Nut:, . This should 
match the experimental values of Mk + , , given by 

where S,, , is the correct shear rate at zk+, Therefore, 
the shear rate at time rk+ t is obtained by rearranging 
the above equation 

s k+, = $+,+(I%+,--KE!,) (37) 
s*“+, 

where the sensitivity coefficient dNu*/aSls;+, is cal- 
culated by solving the direct problem 

aNu* Nut, , K 1+ 4%‘+ / I- Nu:, , (S,“, ,I 
as $+, &+ 1 

(38) 

The concentration field at rkk, , is recalculated by using 
the new estimated shear rate Sk+, to give a mass flux 

Nuk*+ I which is closer to the experimental data than 
Nu,*,o , 

The chief difficulty in using this method is the start, 
where both the concentration field at z. and the shear 
rate at r , need to be guessed. 

5. RESULTS ON THE DIRECT PROBLEM 

Equation (5) has been solved by assuming a sinus- 
oidal variation of the shear rate, i.e. equation (8). 
Amplitude 3 and frequency w* were varied to find 
their effects on the calculated total mass flux to the 
electrode. The same values of s and w* as used by 
Kaiping were explored in order to compare numerical 
results. 

For an amplitude of 0.5 the shape of the mass flux 
profile is close to that predicted by quasi-steady state 
theory. It is noted that an increase in w* from 0.5 to 
2.0 causes a decrease in the amplitude and a shift in 
the phase of the sinusoidal function describing the 
shear rate variation, as predicted by the linear theory 
presented in ref. [5]. Correction factors, 4 for the 
phase and l/A2 for the amplitude, derived from the 
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Table 2. Correction factors obtained from the inverse method 
and the linear theory (s? = 0.5) 

O* 

Q, l//f2 
Linear Inverse Linear Inverse 
theory method theory method 

0.5 8” 8.5’ -1.00 -1.00 
2.0 31’ 33” 1.25 1.32 

inverse method are compared with the ones from the 
linear theory in Table 2. 

For a large value of 0.9 the mass flux profile, shown 
in Fig. 3, no longer has the sinusoidal shape that 
would be displayed by the quasi-steady state solution. 
It is noted that the maximum value is the same for all 
frequencies and close to that predicted by quasi-steady 
theory. However, the ma~itudes of the minima of 
the mass fIux are strongly influenced by w*. The 
maximum corresponds roughly to the maximum in 
the shear rate so the convection term dominates the 
inertia term, &/at, in equation (5). On the other hand, 
the shear rate is small when the mass flux is a 
minimum, and the inertia is important. It is noted 
that the distortion of the flux profile increases with 
increasing CD*. 

When the amplitude of the sinusoidal shear rate 
function is greater than one, flow reversal occurs at 
the wall over part of the cycle. Results for amplitudes 
of 2 and 6.4 are shown in Figs. 4(a) and (b). When 
the shear rate is negative the mass flux is positive, so 
the curves characterizing the time variations of the 
mass flux and the shear rate are quite different. 
Changes in the frequency have a strong effect. The 
hump in the mass transfer rate corresponding to the 
minimum in the shear tends to become smeared as 
the frequency increases. The phase at which the fIow 
changes direction corresponds roughly to inflection 
points in the mass transfer profile. 

The problem of using mass transfer profiles of 
the type shown in Figs. 4(a) and (b) to predict shear 
rate profiles becomes evident. It would be hard to 
guess that such mass transfer results are caused by a 
sinusoidally varying shear rate. 

:::i: 
0 45 90 135 180 225 270 315 360 

Phase(degree) 

FIG. 3. Numerical calculations of the modified Nusselt num- 
ber for shear rate : S = 1+0.9 cos (o*z) ; -, quasi-steady 
solution ; . ., (jJ*=()1. ---- w*=o.5. - 

w* = l.O:.‘--, o* 2 2.0. 
-) 

0.25 - 

0 45 90 135 180 225 270 315 360 

Phase(degree) 

FIG. 4(a). Numerical calculations of the modified Nusselt 
number for shear rate : S = 1 + 2.0 cos (WIT) ; -, quasi- 
steady solution; ., w* = 0.2; ----, o* = 1 .O ; -----, 

o* = 5.0. 

1.75 / 

1.25 

0.00 
0 45 90 135 180 225 270 315 360 

Phase(degree) 

FIG. 4(b). Numerical calculations of the modified Nusselt 
number for shear rate : S = I+&4 cos (w*r) ; -, quasi- 
steady solution; . ’ t . . w* = 0.2; -.-..--, w* = 1.0: -, 

Q* = 5.0. 

It is to be noted that Figs. 3 and 4 are in good 
agreement with results calculated by Kaiping [9] with 
a different numerical algorithm. 

6. RESULTS ON THE INVERSE PROBLEM 

6.1. Calculation of S for the whole time domain 
The mass transfer profiles in Figs. 3 and 4 were used 

to test the inverse methods outlined in Section 4. For 
non-reversing flows the whole time method works 
quite well. For a sinusoidal variation of shear rate, 
the left-hand side of equation (33) becomes zero, if 
the estimation is done for the whole period, since the 
periodic behavior of the function makes the sum- 
mation of the products of sensitivity coefficients equal 
to zero. Therefore, the period is broken into four 
quarters ; each quarter is analyzed in sequence. The 
estimated parameters for each quarter are then aver- 
aged. An example of an estimation is given in Table 
3. The mass transfer profile analyzed is for w* = 1.0 

Table 3. An example of whole time domain estimation 

First guess Final estimation Input shear rate 

5: 0.8 0.5 0.9998 0.9002 0.9000 I a00 

83 nib 9.6x 1o-6 0.0000 
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given in Fig. 3. An arbitrary first guess of the par- 
ameters is shown in the first column of the table. After 
several iterations, the estimated parameters, listed in 
the second column of the table, are close to the values 
characterizing the input shear rate. 

This method was not able to treat problems with 
flow reversals. The first guess of the shear variation 
might be so far off from the true one that the predicted 
reversal points (shear rate changing from positive to 
negative and from negative to positive) are very 
different from the true ones. At the estimated turnover 
points, the numerical calculation changes marching 
direction and will result in a set of sensitivity 
coe~cients that is completely different from that of 
the real situation for which the flow has not yet 
changed direction. 

6.2. Sequential esfimation of the shear variation 
The sequential estimation technique outlined in 

Section 4.2 was applied to the time variations of the 
mass flux shown in Fig. 3. The shear rate profiles 
calculated for the three mass flux profiles (shown in 
Fig. 5) agree almost exactly with the relation S = 
I +0.9 cos (car) used to generate curves in Fig. 3. 
This indicates that the method works quite well for 
non-reversing flows. 

The sequential estimation was started at the 
maximum mass flux and equation (11) was used to 
estimate a shear rate at the phase angle corresponding 
to the maximum. This estimated shear rate and the 
calculated concentration field were used as the con- 
ditions at the initial time, zO. For the case of a periodic 
shear rate variation without flow reversal, the cal- 
culated shear rate profile does not change after three 
or four periods and converges to the correct solution. 

The shear rate profiles shown in Figs. 6(a) and (b) 
were calculated with sequential estimation technique 
from the mass flux profiles for reversing flows shown 
in Figs. 4(a) and (b). It is to be noted that in this case 
the direction of flow (in addition to the mass flux 
profne) was assumed to be known. It is seen in Fig. 

Phasa(degrss) 

FIG. 6(a). Wall shear rate profiles for the mass fluxes shown 
in Fig. 4(a), estimated by the sequential technique. 

Phose(degrse) 

FIG. 5. Wall shear rate profiles for the mass fiuxes shown in 
Fig. 3, estimated by the sequential technique. 

225 270 315 360 

Phoss(degrssf 

FIG. 6(b). Wall shear rate profiles for the mass fluxes shown 
in Fig. 4(b), estimated by the sequential technique. 

6(a) that the estimated shear variations for different 
frequencies are very close to the correct one. There is 
only a minor scatter in the points just after flow rever- 
sal. For 3 = 6.4, as shown in Fig. 6(b), the scatter is 
larger and the estimation is not so good as for 9 = 2.0, 
in Fig, 6(a). However, considering the large amplitude 
of the shear rate variations compared to the mean 
shear rate, the estimation of the shear variation is 
good. 

The estimation of initial conditions, i.e. the shear 
rate and the con~ntration field, with the maximum 
mass flux and the quasi-steady solution is less accurate 
for profiles with reversing flows. This can be seen in 
Figs. 4(a) and (b) where the mass fluxes corresponding 
to the maximum shear rate are seen to deviate con- 
siderably from the quasi-steady solution. The con- 
sequence of this is that a longer time is required for 
the solution to converge. 

Another problem encountered in solving the inverse 
problem with flow reversal is the calculation near the 
point where flow reversal occurs. The actual vari- 
ations of shear rate and mass flux are continuous. but 
the estimation is in discrete form. consequently, the 
turnover point in the numerical calculation can devi- 
ate from the actual one. This discrepancy is probably 
causing deviations of the estimated shear rate from the 
real ones after flow reversal. Beck et al. [I 11 suggested 
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that the stability of the estimation can be greatly 
improved if the shear rate at times rk+ ,, zk+*, . . . , 
7k+r_, are assumed equal to the shear rate at time zk, 

and if the measured signals at those time points are 
used to estimate the shear rate S, at time zk. However, 
this will not work near points of flow reversal. If the 
shear rate at the time just before the flow reversal is 
to be estimated, the assumption that the shear rates 
at the next several time points equal the shear rate at 
this time point is obviously bad, since the marching 
direction in X at those time points stays the same as 
at the time point before the flow reversal, even though 
the flow has reversed. As a consequence, the con- 
centration fields and the sensitivity coefficients are 
miscalculated. Diffusion in the X-direction could be 
important at the moment flow reversal occurs. Since 
the present estimation is based on results obtained 
from the direct solution with no x-diffusion, the devi- 
ation near the turnover point cannot be associated 
with the neglect of this term. However, the effect of 
x-diffusion on the accuracy of the results for the direct 
and the inverse problems, especially at the moment 
of flow reversal, needs to be given further attention. 
Despite these difficulties the sequential method used 
in the present work gives a good estimation of the 
shear variation even for large amplitudes and high 
frequencies. 

7. CONCLUSION 

Numerical methods are used to solve the direct and 
the inverse mass transfer problems for an elec- 
trochemical wall probe. The results indicate that the 
use of the quasi-steady solution to interpret the mea- 
sured mass transfer rates will cause severe errors in 
the measurement of wall shear stress for large ampli- 
tude unsteady flows. The method outlined in this 
paper to solve the inverse mass transfer problem pro- 
vides a possible way to recover the shear stress vari- 
ation from the measured mass transfer signal. For the 
cases with flow reversal additional information about 
flow direction is needed to solve the inverse problem. 
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ANALYSE DES SONDES A CISAILLEMENT PARIETAL POUR DES ECOULEMENTS 
VARIABLES A LARGE AMPLITUDE 

R&m&La mesure du flux de masse par des electrodes en paroi est une methode utilisee frequemment 
pour determiner le cisaillement parietal. On presente une analyse des performances de ces sondes en 
presence d’ecoulement variable a large amplitude. Elle est baste sur des solutions numeriques du probleme 
direct (variation du cisaillement en fonction du temps) et inverse (variation du transfert de masse en 
fonction du temps). Pour les cas oi il y a inversion de l’tcoulement une information supplementaire sur la 

direction de l’ecoulement est necessaire. 
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UNTERSUCHUNGEN GEMESSENER WANDSCHUBSPANNUNGEN IN 
NICHTSTATIONAREN STROMUNGEN GROSSER AMPLITUDE 

Zusammenfassung-Die Messung des Stofftransports hin zu biindig wandintegrierten Elektroden ist eine 
gebtiuchliche Methode fiir die Bestimmung der Wandschubspannung. Das Verhalten dieser Sensoren bei 
nichtstationiren Striimungen grol3er Amplitude wird analysiert. Dies wird durch numerische Lcsung des 
direkten (die zeitliche Veriinderung der Wandschubspannung ist gegeben) und des inversen Problems (die 
zeitliche Vergnderung des Stoffiibergangs ist gegeben) erreicht. In FIllen einer Stramungsumkehr wird 

zutitzliche Information iiber die Striimungsrichtung beniitigt. 

UCCJIEAOBAHAE PAIjOTbI &4TsHKOB HAITPIIXEHHR CfiBMTA HA CTEHKE lIPI 
HEYCTAHOBHBIIIHXCR TEgEHMRX C 6OJIbIJ.lOft AMl-lJIHTYAOtl 

AmoTarms_kisMepewie tiHTeHcmiiocm MacconepeHoca K ycTaHoBneHHblM 3anomuuo co cTeHKofi 

3neKTponaM RBJIReTCR o6luenpminTbnd MeTOAOM onpenenewin cn~Hr0B0r0 HanpnxeHwx Ha CTeHKe. 

hWIH3HpyEOTCff pa6owe XapaKTepHcT&iKH 3THX~aT‘I&iKOBllpHHeyCTaHOBHBIUeMCXTe'ieHHHC 6onbluoi? 

aMnJIHT)'JlOk. kiCnOJIb3yloTCfl WiCJlCHHbI~lWlIeHSi~ Ajlli np5IMOi(naWCR 83MCHCHHCCllBHTOBOrO HalIp% 

IeHHB Ha CTeHKe CO BpeMeHeM)H 06paTHOti 3aXa'lH (ASTC5l H3MCHeHHC HHTCHCHBHOCTH MaCCOO6MeHa 

CO BpeMeHeM). B CJIy’IanX C 06paLueHaeM TeqeHHI Heo6xornrMa .qOnOJIHliTeJlbHasl HH@OpMa,JHf, 0 Han- 

PaBXCHHHTWCHHR. 


